Detailed dual-Doppler structure of Kelvin-Helmholtz waves from an airborne profiling radar over complex terrain. Part II: Evidence for precipitation enhancement from observations and modeling

Author:

Grasmick Coltin1,Geerts Bart1,Chu Xia1,French Jeffrey R.1,Rauber Robert M.2

Affiliation:

1. 1 Department of Atmospheric Sciences, University of Wyoming

2. 2 Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign

Abstract

AbstractKelvin-Helmholtz (KH) waves are a frequent source of turbulence in stratiform precipitation systems over mountainous terrain. KH waves introduce large eddies into otherwise laminar flow, with updrafts and downdrafts generating small-scale turbulence. When they occur in-cloud, such dynamics influence microphysical processes that impact precipitation growth and fallout. Part I of this paper used dual-Doppler, 2D wind and reflectivity measurements from an airborne cloud radar to demonstrate the occurrence of KH waves in stratiform orographic precipitation systems and identified four mechanisms for triggering KH waves. In Part II, we use similar observations to explore the effects of KH wave updrafts and turbulence on cloud microphysics. Measurements within KH wave updrafts reveal the production of liquid water in otherwise ice-dominated clouds, which can contribute to snow generation or enhancement via depositional and accretional growth. Fallstreaks beneath KH waves contain higher ice water content, composed of larger and more numerous ice particles, suggesting that KH waves and associated turbulence may also increase ice nucleation.A Large-Eddy Simulation (LES), designed to model the microphysical response to the KH wave eddies in mixed phase cloud, shows that depositional and accretional growth can be enhanced in KH waves, resulting in more precipitation when compared to a baseline simulation. While sublimation and evaporation occur in KH downdrafts, persistent supersaturation with respect to ice allows for net increase in ice mass. These modeling results and observations suggest that KH waves embedded in mixed-phase stratiform clouds may increase precipitation, although the quantitative impact remains uncertain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3