Supercooled drizzle development in response to semi-coherent vertical velocity fluctuations within an orographic-layer cloud

Author:

Majewski Adam,French Jeffrey R.ORCID

Abstract

Abstract. Observations of supercooled liquid water are nearly ubiquitous within wintertime orographic-layer clouds over the Intermountain West; however, observations of regions containing supercooled drizzle drops (SCDDs) are much rarer and the factors controlling SCDD development and location less well understood. As part of the Seeded and Natural Orographic Wintertime clouds – the Idaho Experiment (SNOWIE) and its goal of improving understanding of natural cloud structure, this study examines the role of fine-scale (sub-kilometer) vertical velocity fluctuations on the microphysical evolution and location of SCDDs within the observed mixed-phase, wintertime orographic clouds from one research flight in SNOWIE. For the case examined, SCDDs developed in an elevated, postfrontal-layer cloud with cold cloud tops (T<-30 ∘C) and low number concentrations of both ice (less than 0.5 L−1) and cloud droplets (less than 30 cm−3). Regions of supercooled drizzle at flight level extended more than a kilometer along the mean wind direction and were first located at and below layers of semi-coherent vertical velocity fluctuations (SCVVFs) embedded within the cloud and subsequently below cloud top. The microphysical development of SCDDs in this environment is catalogued using size and mass distributions derived from in situ probe measurements. Regions corresponding to hydrometeor growth are determined from radar reflectivity profiles retrieved from an airborne W-band cloud radar. Analysis suggests that SCVVF layers are associated with local SCDD development in response to the kinematic perturbation pattern. This drizzle development and subsequent growth by collision–coalescence is inferred from vertical reflectivity enhancements (−20 dBZ km−1), with drizzle production confirmed by in situ measurements within one of these SCVVF layers. The SCDD production and growth occurs embedded within cloud over shallow (km or less) layers before transitioning to drizzle production at cloud top further downwind, indicating that wind shear and resultant vertical velocity fluctuations may act to enhance or speed up SCDD development compared to classic cloud top broadening mechanisms in orographic (or similarly sheared) cloud environment(s).

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3