A Hail Growth Trajectory Model for Exploring the Environmental Controls on Hail Size: Model Physics and Idealized Tests

Author:

Kumjian Matthew R.1,Lombardo Kelly1

Affiliation:

1. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Abstract

AbstractA detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes.

Funder

Division of Atmospheric and Geospace Sciences

Insurance Institute for Business and Home Safety

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference97 articles.

1. Forecasting hail using a one-dimensional hail growth model within WRF;Adams-Selin;Mon. Wea. Rev.,2016

2. The characteristics of United States hail reports: 1955-2014;Allen;Electron. J. Severe Storms Meteor.,2015

3. Two types of quasi-liquid layers on ice crystals are formed kinetically;Asakawa;Proc. Natl. Acad. Sci. USA,2016

4. Heat transfer from artificial hailstones;Bailey;Quart. J. Roy. Meteor. Soc.,1968

5. A radar-based assessment of the detectability of giant hail;Blair;Electron. J. Severe Storms Meteor.,2011

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3