The Tropical Cyclone as a Divergent Source in a Background Flow

Author:

Ryglicki David R.1,Hodyss Daniel2,Rainwater Gregory3

Affiliation:

1. a Marine Meteorology Division, Naval Research Laboratory, Monterey, California

2. b Remote Sensing Division, Naval Research Laboratory, Washington, D.C.

3. c American Society for Engineering Education, Monterey, California

Abstract

AbstractThe interactions between the outflow of a tropical cyclone (TC) and its background flow are explored using a hierarchy of models of varying complexity. Previous studies have established that, for a select class of TCs that undergo rapid intensification in moderate values of vertical wind shear, the upper-level outflow of the TC can block and reroute the environmental winds, thus reducing the shear and permitting the TC to align and subsequently to intensify. We identify in satellite imagery and reanalysis datasets the presence of tilt nutations and evidence of upwind blocking by the divergent wind field, which are critical components of atypical rapid intensification. We then demonstrate how an analytical expression and a shallow water model can be used to explain some of the structure of upper-level outflow. The analytical expression shows that the dynamic high inside the outflow front is a superposition of two pressure anomalies caused by the outflow’s deceleration by the environment and by the environment’s deceleration by the outflow. The shallow water model illustrates that the blocking is almost entirely dependent upon the divergent component of the wind. Then, using a divergent kinetic energy budget analysis, we demonstrate that, in a full-physics TC, upper-level divergent flow generation occurs in two phases: pressure driven and then momentum driven. The change happens when the tilt precession reaches left of shear. When this change occurs, the outflow blocking extends upshear. We discuss these results with regard to prior severe weather studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3