Sensitivity of Tropical Cyclone Development to the Vortex Size Under Vertical Wind Shear

Author:

Huang Qijun12,Ge Xuyang1ORCID

Affiliation:

1. Key Laboratory of Meteorological Disaster of Ministry of Education Joint International Research Laboratory of Climate and Environment Change Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science and Technology Nanjing China

2. Shanghai Typhoon Institute Shanghai China

Abstract

AbstractThe sensitivity of tropical cyclone (TC) intensification to its inner size in a sheared environment is investigated in this study. Previous research indicated that TCs with smaller sizes spin up more quickly in a quiescent environment. In contrast, our idealized numerical simulations show that TCs with larger inner‐core sizes experience faster growth within a certain size range under the vertical wind shear (VWS) because stronger upper‐level outflows are established quickly for larger TCs. The presence of strong outflow diminishes the impact of VWS, causing the TC re‐alignment. In more detail, the stronger outflow locally reduces the shear, allowing the convective asymmetry to propagate to the upshear side and migrate inward toward the TC center more rapidly. The upshear convection leads to a stronger outflow and thus a greater blocking effect on the upper‐level wind, effectively reducing the VWS and thus allowing subsequent faster TC growth. Our analysis reveals that the TC re‐alignment at an earlier stage allows for significant differences in surface heat flux (surface latent heat flux [SLHF]) distribution based on size. Larger TCs exhibit larger areas of high SLHF, which create favorable thermodynamic conditions for TC developments. Conversely, smaller vortices have limited SLHF underneath, resulting in a prolonged intensification process. Furthermore, the boundary layer recovery mechanism effectively counteracts the low‐level ventilation pathway imposed by the shear. This mechanism supports the downstream deep convection development on the upshear side. This study presents a new perspective, highlighting that the impact of shear on TCs is contingent upon their sizes upon entering a sheared environment.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3