Inconsistent Global Kinetic Energy Spectra in Reanalyses and Models

Author:

Aaron Wang Jih-Wang12,Sardeshmukh Prashant D.12

Affiliation:

1. 1 University of Colorado, CIRES, Boulder CO

2. 2 NOAA Earth System Research Laboratories, Physical Sciences Laboratory, Boulder CO

Abstract

AbstractGlobal upper tropospheric kinetic energy (KE) spectra in several global atmospheric circulation datasets are examined. The datasets considered include the ERA-Interim, JRA-55, and ERA5 reanalyses and two versions of NOAA-GFS analyses at horizontal resolutions ranging from 0.7° to 0.12°. The mesoscale portions of the spectra are found to be highly inconsistent. This is shown to be mainly due to inconsistencies in the scale-dependent numerical damping and in the large contributions to the global mesoscale KE from the KE in convective regions and near orography.The spectra also generally have a steeper mesoscale slope than the -5/3 slope of the observational Nastrom-Gage spectrum pursued at many modeling centers. The sensitivity of the slope in global models to 1) stochastically perturbing diabatic tendencies and 2) decreasing the horizontal hyper-viscosity coefficient is explored in large ensembles of 10-day forecasts made with the NCEP-GFS (0.7° grid) model. Both changes lead to larger mesoscale KE and a flatter spectral slope. The effect is stronger in the modified hyper-viscosity experiment.These results show that (a) despite assimilating vastly more observations than used in the original Nastrom-Gage studies, current high-resolution global analyses still do not converge to a single “true” global mesoscale KE spectrum, and (b) model KE spectra can be made flatter not just by increasing model resolution but also by perturbing model physics and decreasing horizontal diffusion. Such sensitivities and lack of consensus on the spectral slope also raise the possibility that the true global mesoscale spectral slope may not be a precisely -5/3 slope.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3