Affiliation:
1. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia
2. Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
Abstract
AbstractThe impact of global orography on Northern Hemisphere wintertime climate is revisited using the Whole Atmosphere Community Climate Model, WACCM6. A suite of experiments explores the roles of both resolved orography, and the parameterized effects of unresolved orographic drag (hereafter parameterized orography), including gravity waves and boundary layer turbulence. Including orography reduces the extra-tropical tropospheric and stratospheric zonal mean zonal wind, , by up to 80%; this is substantially greater than previous estimates. Ultimately parameterized orography accounts for 60-80% of this reduction; however, away from the surface most of the forcing of by parameterized orography is accomplished by resolved planetary waves. We propose that a catalytic wave-mean-flow positive feedback in the stratosphere makes the stratospheric flow particularly sensitive to parameterized orography. Orography and land-sea contrast contribute approximately equally to the strength of the mid-latitude stationary waves in the free troposphere, although orography is the dominant cause of the strength of the Siberian high and Aleutian low at the surface, and of the position of the Icelandic low. We argue that precisely quantifying the role of orography on the observed stationary waves is an almost intractable problem, and in particular should not be approached with linear stationary wave models in which is prescribed. We show that orography has less impact on stationary waves, and therefore on , on a backwards rotating Earth. Lastly, we show that atmospheric meridional heat transport shows remarkable constancy across our simulations, despite vastly different climates and stationary wave strengths.
Publisher
American Meteorological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献