Near Invariance of Poleward Atmospheric Heat Transport in Response to Midlatitude Orography

Author:

Cox Tyler1,Donohoe Aaron2,Roe Gerard H.3,Armour Kyle C.14,Frierson Dargan M. W.1

Affiliation:

1. a Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. b Polar Science Center/Applied Physics Lab, University of Washington, Seattle, Washington

3. c Department of Earth and Space Sciences, University of Washington, Seattle, Washington

4. d School of Oceanography, University of Washington, Seattle, Washington

Abstract

Abstract Total poleward atmospheric heat transport (AHT) is similar in both magnitude and latitudinal structure between the Northern and Southern Hemispheres. These similarities occur despite more major mountain ranges in the Northern Hemisphere, which help create substantial stationary eddy AHT that is largely absent in the Southern Hemisphere. However, this hemispheric difference in stationary eddy AHT is compensated by hemispheric differences in other dynamic components of AHT so that total AHT is similar between hemispheres. To understand how AHT compensation occurs, we add midlatitude mountain ranges in two different general circulation models that are otherwise configured as aquaplanets. Even when midlatitude mountains are introduced, total AHT is nearly invariant. We explore the near invariance of total AHT in response to orography through dynamic, energetic, and diffusive perspectives. Dynamically, orographically induced changes to stationary eddy AHT are compensated by changes in both transient eddy and mean meridional circulation AHT. This creates an AHT system with three interconnected components that resist large changes to total AHT. Energetically, the total AHT can only change if the top-of-the-atmosphere net radiation changes at the equator-to-pole scale. Midlatitude orography does not create large-enough changes in the equator-to-pole temperature gradient to alter outgoing longwave radiation enough to substantially change total AHT. In the zonal mean, changes to absorbed shortwave radiation also often compensate for changes in outgoing longwave radiation. Diffusively, the atmosphere smooths anomalies in temperature and humidity created by the addition of midlatitude orography, such that total AHT is relatively invariant. Significance Statement The purpose of this study is to better understand how orography influences heat transport in the atmosphere. Enhancing our understanding of how atmospheric heat transport works is important, as heat transport helps moderate Earth’s surface temperatures and influences precipitation patterns. We find that the total amount of atmospheric heat transport does not change in the presence of mountains in the midlatitudes. Different pieces of the heat transport change, but they change in compensatory ways, such that the total heat transport remains roughly constant.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3