Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X and W Bands

Author:

Liao Liang1,Meneghini Robert2,Tian Lin1,Heymsfield Gerald M.2

Affiliation:

1. Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

2. NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

AbstractSimulated radar signatures within the melting layer in stratiform rain—namely, the radar bright band—are checked by means of comparisons with simultaneous measurements of the bright band made by the ER-2 Doppler radar (EDOP; X band) and Cloud Radar System (CRS; W band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida-Area Cirrus Experiment (CRYSTAL-FACE) campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient–fast Fourier transform numerical method for X and W bands and expressing the fractional water content of a melting particle as an exponential function in particle radius, it is found that at X band the simulated radar brightband profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured brightband profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by comparisons of the radar profiles made in the rain regions where the unattenuated W-band reflectivity profiles can be estimated through the X- and W-band Doppler velocity measurements. The brightband model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the satellite-based Tropical Rainfall Measuring Mission and Global Precipitation Measuring Mission.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3