Affiliation:
1. Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
Abstract
Abstract
The selective absorption mechanism (SAM), newly proposed in Part I of this study on the maintenance mechanism of blocking, is verified through numerical experiments. The experiments were based on the nonlinear equivalent-barotropic potential vorticity equation, with varying conditions with respect to the shape and amplitude of blocking, and characteristics of storm tracks (displacement and strength) and background zonal flow.
The experiments indicate that the SAM effectively maintains blocking, irrespective of the above conditions. At first, by applying a channel model on a β plane, numerical experiments were conducted using a uniform background westerly with and without a jet. The results show that the presence of a jet promotes the effectiveness of the SAM. Then, two types of spherical model experiments were also performed. In idealized experiments, the SAM was as effective as the β-plane model in explaining the maintenance of blocking. Moreover, experiments performed under realistic meteorological conditions showed that the SAM maintained a real block, demonstrating that the SAM is effective.
These results, and the case study in Part I, verify that the SAM is the effective general maintenance mechanism for blocking.
Publisher
American Meteorological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献