A Climatology of Northern Hemisphere Blocking

Author:

Barriopedro David1,García-Herrera Ricardo1,Lupo Anthony R.2,Hernández Emiliano1

Affiliation:

1. Departamento de Física de la Tierra II, Facultad Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain

2. Departament of Soil, Environmental, and Atmospheric Sciences, University of Missouri—Columbia, Columbia, Missouri

Abstract

Abstract In this paper a 55-yr (1948–2002) Northern Hemisphere blocking climatology is presented. Traditional blocking indices and methodologies are revised and a new blocking detection method is designed. This algorithm detects blocked flows and provides for a better characterization of blocking events with additional information on blocking parameters such as the location of the blocking center, the intensity, and extension. Additionally, a new tracking procedure has been incorporated following simultaneously the individual evolution of blocked flows and identifying coherently persistent blocked patterns. Using this method, the longest known Northern Hemisphere blocking climatology is obtained and compared with previous studies. A new regional classification into four independent blocking sectors has been obtained based on the seasonally preferred regions of blocking formation: Atlantic (ATL), European (EUR), West Pacific (WPA), and East Pacific (EPA). Global and regional blocking characteristics have been described, examining their variability from the seasonal to interdecadal scales. The global long-term blocking series in the North Hemisphere showed a significant trend toward weaker and less persistent events, as well as regional increases (decreases) in blocking frequency over the WPA (ATL and EUR) sector. The influence of teleconnection patterns (TCPs) on blocking parameters is also explored, being confined essentially to wintertime, except in the WPA sector. Additionally, regional blocking parameters, especially frequency and duration, are sensitive to regional TCPs, supporting the regional classification obtained in this paper. The ENSO-related blocking variability is evident in blocking intensities and preferred locations but not in frequency. Finally, the dynamical connection between blocking occurrence and regional TCPs is examined through the conceptual model proposed by Charney and DeVore. Observational evidence of a dynamical link between the asymmetrical temperature distributions induced by TCPs and blocking variability is provided with a distinctive contrast “warm ocean/cold land” pattern favoring the blocking occurrence in winter. However, the conceptual model is not coherent in the WPA sector, suggesting different blocking mechanisms operating in this sector.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 323 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3