Dynamics of Tropical Cyclone Intensification: Deep Convective Cyclonic “Left Movers”

Author:

Hogsett Wallace A.1,Stewart Stacy R.1

Affiliation:

1. NOAA/NWS/National Hurricane Center, Miami, Florida

Abstract

Abstract Deep convective processes play an important role in tropical cyclone (TC) formation and intensification. In this study, the authors investigate the interaction between discrete buoyant updrafts and the vertically sheared azimuthal flow of an idealized TC vortex by adapting the updraft–shear dynamical framework to the TC. The authors argue theoretically that deep updrafts initiating near the TC radius of maximum wind (RMW) may propagate with a component left of the mean tangential flow, or radially inward toward the TC center. Results suggest that these unique TC updrafts, or “left movers” with respect to the mean azimuthal flow, may play an active role in TC intensification. The notion that updraft-scale convection may propagate with a component transverse to the mean flow is not at all new. Cyclonic midlatitude supercell thunderstorms often deviate from their mean environmental flow, always to the right of the environmental vertical shear vector. The deviant motion arises owing to nonlinear interactions between the incipient updraft and the environmental vertical shear. Although significant differences exist between the idealized TC considered here and real TCs, observational and high-resolution operational modeling evidence suggests that some intense TC updrafts may propagate with a radially inward and right-of-shear component and exhibit structural characteristics consistent with theory. The authors propose that left movers constitute a unique class of intense TC updrafts that may be favored near the TC RMW where local vertical shear of the TC azimuthal winds may be maximized. To simulate these left movers in a realistic way, mesoscale TC forecasting models must resolve nonlinear interactions between updrafts and vertical shear.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3