High-Resolution Simulation of Hurricane Bonnie (1998). Part I: The Organization of Eyewall Vertical Motion

Author:

Braun Scott A.1,Montgomery Michael T.2,Pu Zhaoxia3

Affiliation:

1. Mesoscale Atmospheric Processes Branch, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

3. Department of Meteorology, University of Utah, Salt Lake City, Utah

Abstract

Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) is used to simulate Hurricane Bonnie at high resolution (2-km spacing) in order to examine how vertical wind shear impacts the distribution of vertical motion in the eyewall on both the storm and cloud scale. As in many previous studies, it is found here that the shear produces a wavenumber-1 asymmetry in the time-averaged vertical motion and rainfall. Several mechanisms for this asymmetry are evaluated. The vertical motion asymmetry is qualitatively consistent with an assumed balance between horizontal vorticity advection by the relative flow and stretching of vorticity, with relative asymmetric inflow (convergence) at low levels and outflow (divergence) at upper levels on the downshear side of the eyewall. The simulation results also show that the upward motion portion of the eyewall asymmetry is located in the direction of vortex tilt, consistent with the vertical motion that required to maintain dynamic balance. Variations in the direction and magnitude of the tilt are consistent with the presence of a vortex Rossby wave quasi mode, which is characterized by a damped precession of the upper vortex relative to the lower vortex. While the time-averaged vertical motion is characterized by ascent in a shear-induced wavenumber-1 asymmetry, the instantaneous vertical motion is typically associated with deep updraft towers that generally form on the downtilt-right side of the eyewall and dissipate on the downtilt-left side. The updrafts towers are typically associated with eyewall mesovortices rotating cyclonically around the eyewall and result from an interaction between the shear-induced relative asymmetric flow and the cyclonic circulations of the mesovortices. The eyewall mesovortices may persist for more than one orbit around the eyewall and, in these cases, can initiate multiple episodes of upward motion.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference68 articles.

1. The effect of relative flow on the asymmetric structure in the interior of hurricanes.;Bender;J. Atmos. Sci.,1997

2. Dissipative heating and hurricane intensity.;Bister;Meteor. Atmos. Phys.,1998

3. Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities.;Black;J. Atmos. Sci.,1996

4. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity.;Black;Mon. Wea. Rev.,2002

5. Black, P. G., and F. D.MarksJr., 1991: The structure of an eyewall mesovortex in Hurricane Hugo (1989). Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 579–582.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3