Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence

Author:

Arabas Sylwester1,Shima Shin-ichiro2

Affiliation:

1. Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

2. Graduate School of Simulation Studies, University of Hyogo, Kobe, and Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Abstract

Abstract A series of simulations employing the superdroplet method (SDM) for representing aerosol, cloud, and rain microphysics in large-eddy simulations (LES) is discussed. The particle-based formulation treats all particles in the same way, subjecting them to condensational growth and evaporation, transport of the particles by the flow, gravitational settling, and collisional growth. SDM features a Monte Carlo–type numerical scheme for representing the collision and coalescence process. All processes combined cover representation of cloud condensation nuclei (CCN) activation, drizzle formation by autoconversion, accretion of cloud droplets, self-collection of raindrops, and precipitation, including aerosol wet deposition. The model setup used in the study is based on observations from the Rain in Cumulus over the Ocean (RICO) field project. Cloud and rain droplet size spectra obtained in the simulations are discussed in context of previously published analyses of aircraft observations carried out during RICO. The analysis covers height-resolved statistics of simulated cloud microphysical parameters such as droplet number concentration, effective radius, and parameters describing the width of the cloud droplet size spectrum. A reasonable agreement with measurements is found for several of the discussed parameters. The sensitivity of the results to the grid resolution of the LES, as well as to the sampling density of the probabilistic Monte Carlo–type model, is explored.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3