Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0

Author:

Zhang RuyiORCID,Zhou Limin,Shima Shin-ichiroORCID,Yang Huawei

Abstract

Abstract. The phenomenon of electric fields applied to droplets, inducing droplet coalescence, is called the electro-coalescence effect. An analytic expression for electro-coalescence with the accurate electrostatic force for a pair of droplets with opposite-sign charges is established by treating the droplets as conducting spheres (CSs). To investigate this effect, we applied a weak electric field to a cumulus cloud using a cloud model that employs the super-droplet method, a probabilistic particle-based microphysics method. This study employs a two-dimensional (2D) large-eddy simulation (LES) in a flow-coupled model to examine aerosol microphysics (such as collision–coalescence enhancement, velocity fluctuations, and supersaturation fluctuations) in warm cumulus clouds without relying on subgrid dynamics. In the simulation, we assume that droplets carry opposite-sign charges and are well mixed within the cloud. The charge is not treated as an individual particle attribute. To assess fluctuation effects, we conducted 50 simulations with varying pseudo-random number sequences for each electro-coalescence treatment. The results show that, with CS treatment, the electrostatic force contributes a larger effect on cloud evolution than in previous research. With a lower charge limit of the maximum charge amount on the droplet, the domain total precipitation with CS treatment for droplets with opposite signs is higher than that with the no-charge (NC) setting. Compared to previous work, the multi-image dipole treatment of CS results in higher precipitation. It is found that the electro-coalescence effect could affect rain formation even when the droplet charge is at the lower charge limit. High pollution levels result in greater sensitivity to electro-coalescence. The results show that, when the charge ratio between two droplets is over 100, the short-range attractive electric force due to the multi-image dipole would also significantly enhance precipitation for the cumulus. It is indicated that, although the accurate treatment of the electrostatic force with the CS method would require 30 % longer computation time than before, it is worthwhile to include it in cloud, weather, and climate models.

Funder

National Natural Science Foundation of China

Japan Society for the Promotion of Science

Japan Science and Technology Agency

China Scholarship Council

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3