On the Intermittency of Gravity Wave Momentum Flux in the Stratosphere

Author:

Hertzog Albert1,Alexander M. Joan2,Plougonven Riwal3

Affiliation:

1. Laboratoire de Météorologie Dynamique, École Polytechnique, IPSL, Palaiseau, France

2. NorthWest Research Associates, CoRA Office, Boulder, Colorado

3. Laboratoire de Météorologie Dynamique, École Normale Supérieure, IPSL, Paris, France

Abstract

AbstractIn this article, long-duration balloon and spaceborne observations, and mesoscale numerical simulations are used to study the intermittency of gravity waves in the lower stratosphere above Antarctica and the Southern Ocean; namely, the characteristics of the gravity wave momentum-flux probability density functions (pdfs) obtained with these three datasets are described. The pdfs consistently exhibit long tails associated with the occurrence of rare and large-amplitude events. The pdf tails are even longer above mountains than above oceanic areas, which is in agreement with previous studies of gravity wave intermittency in this region. It is moreover found that these rare, large-amplitude events represent the main contribution to the total momentum flux during the winter regime of the stratospheric circulation. In contrast, the wave intermittency significantly decreases when stratospheric easterlies develop in late spring and summer. It is also shown that, except above mountainous areas in winter, the momentum-flux pdfs tend to behave like lognormal distributions. Monte Carlo simulations are undertaken to examine the role played by critical levels in influencing the shape of momentum-flux pdfs. In particular, the study finds that the lognormal shape may result from the propagation of a wave spectrum into a varying background wind field that generates the occurrence of frequent critical levels.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3