The More Rain, the Better the Model Performs—The Dependency of Quantitative Precipitation Forecast Skill on Rainfall Amount for Typhoons in Taiwan

Author:

Wang Chung-Chieh1

Affiliation:

1. Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Abstract

Abstract A strong dependency of model performance in quantitative precipitation forecasts (QPFs) as measured by scores such as the threat score (TS) on rainfall amount (i.e., the better the model performs when there is more rain), is demonstrated through real-time forecasts by the 2.5-km Cloud-Resolving Storm Simulator (CReSS) for 15 typhoons in Taiwan in 2010–12. Implied simply from the positive correlation between rain-area sizes and scores, this dependency is expected to exist in all regions, models, and rainfall regimes, while for typhoon QPFs in Taiwan it is also attributed to the model’s capability to properly handle (within 72 h) the processes leading to more rain, which are largely controlled by the typhoon’s track, size, structure, and environment, and the island’s topography. Because of this dependency, the performance of model QPFs for extreme events can be assessed accurately only when forecasts targeted for periods of comparable rainfall magnitude are included for averaging. For the most-rainy 24 h of the top-5 typhoons, the 0–24-h QPFs by CReSS have mean TS of 0.67, 0.67, 0.58, 0.51, and 0.32 at thresholds of 25, 50, 130, 200, and 350 mm, and 0.64, 0.57, 0.37, 0.33, and 0.22 from 48–72-h QPFs, respectively, suggesting superior performance even 2–2.5 days in advance. These scores are strikingly high, precisely because Taiwan can receive extreme rainfall from typhoons. For smaller (nonhazardous) events, the mean scores are progressively lower, but also unimportant and less representative statistically. Therefore, it is inappropriate to average scores over multiple forecasts as those for less-rainy periods would contaminate the result for key periods. The implication for forecasters is also discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3