Using Evolutionary Programs to Maximize Minimum Temperature Forecast Skill

Author:

Roebber Paul J.1

Affiliation:

1. University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Abstract

Abstract Evolutionary program ensembles are developed and tested for minimum temperature forecasts at Chicago, Illinois, at forecast ranges of 36, 60, 84, 108, 132, and 156 h. For all forecast ranges examined, the evolutionary program ensemble outperforms the 21-member GFS model output statistics (MOS) ensemble when considering root-mean-square error and Brier skill score. The relative advantage in root-mean-square error widens with forecast range, from 0.18°F at 36 h to 1.53°F at 156 h while the probabilistic skill remains positive throughout. At all forecast ranges, probabilistic forecasts of abnormal conditions are particularly skillful compared to the raw GFS guidance. The evolutionary program reliance on particular forecast inputs is distinct from that obtained from considering multiple linear regression models, with less reliance on the GFS MOS temperature and more on alternative data such as upstream temperatures at the time of forecast issuance, time of year, and forecasts of wind speed, precipitation, and cloud cover. This weighting trends away from current observations and toward seasonal (climatological) measures as forecast range increases. Using two different forms of ensemble member subselection, a Bayesian model combination calibration is tested on both ensembles. This calibration had limited effect on evolutionary program ensemble skill but was able to improve MOS ensemble performance, reducing but not eliminating the skill gap between them. The largest skill differentials occurred at the longest forecast ranges, beginning at 132 h. A hybrid, calibrated ensemble was able to provide some further increase in skill.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3