Idealized Study of Ocean Impacts on Tropical Cyclone Intensity Forecasts

Author:

Halliwell G. R.1,Gopalakrishnan S.2,Marks F.2,Willey D.3

Affiliation:

1. Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

2. Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

3. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Abstract

Abstract Idealized coupled tropical cyclone (TC) simulations are conducted to isolate ocean impacts on intensity forecasts. A one-dimensional ocean model is embedded into the Hurricane Weather Research and Forecasting (HWRF) mesoscale atmospheric forecast model. By inserting an initial vortex into a horizontally uniform atmosphere above a horizontally uniform ocean, the SST cooling rate becomes the dominant large-scale process controlling intensity evolution. Westward storm translation is introduced by bodily advecting ocean fields toward the east. The ocean model produces a realistic cold wake structure allowing the sensitivity of quasi-equilibrium intensity to storm (translation speed, size) and ocean (heat potential) parameters to be quantified. The atmosphere provides feedback through adjustments in 10-m temperature and humidity that reduce SST cooling impact on quasi-equilibrium intensity by up to 40%. When storms encounter an oceanic region with different heat potential, enthalpy flux adjustment is governed primarily by changes in air–sea temperature and humidity differences that respond within 2–4 h in the inner-core region, and secondarily by wind speed changes occurring over a time interval up to 18 h after the transition. Atmospheric feedback always acts to limit the change in enthalpy flux and intensity through adjustments in 10-m temperature and humidity. Intensity change is asymmetric, with a substantially smaller increase for storms encountering larger heat potential compared to the decrease for storms encountering smaller potential. The smaller increase results initially from the smaller wind speed present at the transition time plus stronger limiting atmospheric feedback. The smaller wind speed increase resulting from these two factors further enhances the asymmetry.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3