Typhoon Kai-Tak: An Ocean’s Perfect Storm

Author:

Chiang Tzu-Ling1,Wu Chau-Ron1,Oey Lie-Yauw2

Affiliation:

1. Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

2. Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Abstract

Abstract An unusually intense sea surface temperature drop (ΔSST) of about 10.8°C induced by the Typhoon Kai-Tak is observed in the northern South China Sea (SCS) in July 2000. Observational and high-resolution SCS model analyses were carried out to study the favorable conditions and relevant physical processes that cause the intense surface cooling by Kai-Tak. Upwelling and entrainment induced by Kai-Tak account for 62% and 31% of the ΔSST, respectively, so that upwelling dominates vertical entrainment in producing the surface cooling for a subcritical storm such as Kai-Tak. However, wind intensity and propagation speed alone cannot account for the large ΔSST. Prior to Kai-Tak, the sea surface was anomalously warm and the main thermocline was anomalously shallow. The cause was a delayed transition of winter to summer monsoon in the northern SCS in May 2000. This produced an anomalously strong wind stress curl and a cold eddy capped by a thin layer of very warm surface water west of Luzon. Kai-Tak was the ocean’s perfect storm in passing over the eddy at the “right time,” producing the record SST drop and high chlorophyll-a concentration.

Publisher

American Meteorological Society

Subject

Oceanography

Reference23 articles.

1. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model.;Bender;J. Geophys. Res.,1993

2. Physical and geographical origins of the South China Sea Warm Current.;Chiang;J. Geophys. Res.,2008

3. Response of the South China Sea to Tropical Cyclone Ernie 1996.;Chu;J. Geophys. Res.,2000

4. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures.;Conkright,2002

5. Linear theory of the response of a two layer ocean to a moving hurricane.;Geisler;Geophys. Fluid Dyn.,1970

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3