Two Heavy Rainfall Types over the Korean Peninsula in the Humid East Asian Summer Environment: A Satellite Observation Study

Author:

Song Hwan-Jin1,Sohn Byung-Ju1

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Abstract

Abstract A total of 10 years (2002–11) of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivities, signaling heavy rainfall (>10 mm h−1), were objectively classified by applying the K-means clustering method in order to obtain typical reflectivity profiles associated with heavy rainfall over East Asia. Two types of heavy rainfall emerged as the most important rain processes over East Asia: type 1 (cold type) characterized by high storm height and abundant ice water under convectively unstable conditions, developing mostly over inland China; and type 2 (warm type) associated with a lower storm height and lower ice water content, developing mostly over the ocean. These two types also show sharp contrasts in relation to their seasonal changes and in the diurnal variation of frequency maxima, in addition to other contrasting meteorological parameters. The PR-derived heavy rain events were observed over the Korean peninsula and their spatiotemporal evolution was examined using 10-yr composites of 11-μm brightness temperature from geostationary satellites and Interim ECMWF Re-Analysis (ERA-Interim) data. Cold-type heavy rainfall over Korea is characterized by an eastward moving cloud system with an oval shape while the warm type shows a comparatively wide spatial distribution over an area extending from the southwest to northeast. Overall the warm-type process appears to link the low-level moisture convergence area to the vertically aligned divergence area formed over the jet stream level. This setup continuously pushes air upward under moist-adiabatically near-neutral conditions and thus yields heavy rainfall. As warm-type heavy rainfall persists longer, it is considered to be more responsible for flood events occurring over the Korean peninsula.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3