An Investigation of the Influences of Mesoscale Ocean Eddies on Tropical Cyclone Intensities

Author:

Ma Zhanhong1,Fei Jianfang2,Liu Lei2,Huang Xiaogang2,Li Yan3

Affiliation:

1. College of Meteorology and Oceanography, National University of Defense Technology, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

2. College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China

3. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract The impact of mesoscale ocean eddies on tropical cyclone intensities is investigated based on a combination of observations and atmosphere–ocean coupling simulations. A statistical analysis reveals that the tropical cyclone–eddy interactions occur at very high frequencies; over 90% of the recorded tropical cyclones over the western North Pacific have encountered ocean eddies from 2002 to 2011. The chances of confronting a cold core eddy (CCE) are slightly larger than confronting a warm core eddy (WCE). The observational sea surface temperature data have statistically evidenced that CCEs tend to promote the sea surface temperature decrease caused by tropical cyclones while WCEs tend to restrain such ocean responses. The roles of CCEs are statistically more significant than those of WCEs in modulating the sea surface temperature response. It is therefore proposed that CCEs should be paid no less attention than WCEs during the TC–ocean interaction process. The CCE-induced changes in sea surface temperature decreases are observed to be more remarkable for more intense and slower-moving tropical cyclones and for thinner depth of mixed layers. A set of numerical experiments reveal that the effects of ocean eddies are positively related to their strengths and storm intensities, and the eddy feedback is less pronounced when the eddy is located at one side of storm tracks than right below the tropical cyclone center. The eddy-induced moisture disequilibrium sooner vanishes after the departure of tropical cyclones. The intensity recoveries last for 1–2 days because of the dependence of surface enthalpy fluxes on surface winds.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Key Laboratory of Meteorological Disaster of Ministry of Education

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3