Upper Ocean Responses to Tropical Cyclone Mekunu (2018) in the Arabian Sea

Author:

Ren Dan1ORCID,Han Shuzong12,Wang Shicheng3

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China

2. Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572025, China

3. National Ocean Technology Center, Tianjin 300112, China

Abstract

Based on Argo observations and a coupled atmosphere–ocean–wave model, the upper ocean responses to the tropical cyclone (TC) Mekunu (2018) were investigated, and the role of a pre-existing cold eddy in modulating the temperature response to TC Mekunu was quantified by employing numerical experiments. With TC Mekunu’s passage, the mixed layer depth (MLD) on both sides of its track significantly deepened. Moreover, two cold patches (<26 °C) occurred, where the maximum cooling of the mixed layer temperature (MLT) reached 6.62 °C and 6.44 °C. Both the MLD and MLT changes exhibited a notable rightward bias. However, the changes in the mixed layer salinity (MLS) were more complex. At the early stage, the MLS on both sides of the track increased by approximately 0.5 psu. When TC Mekunu made landfall, the MLS change around the track was asymmetric. Significantly, a cold eddy pre-existed where the second cold patch emerged, and this eddy was intensified after TC Mekunu’s passage, with an average sea surface height reduction of approximately 2.7 cm. By employing the stand-alone ocean model, the numerical experimental results demonstrated that the pre-existing cold eddy enhanced TC-induced MLT cooling by an average of approximately 0.41 °C due to steeper temperature stratification at the base of mixed layer. Moreover, heat budget analysis indicated that the pre-existing cold eddy also enhanced subsurface temperature cooling mainly through zonal advection.

Funder

Research and Development of Marine Electromagnetic Field Sensors and Demonstration of Electromagnetic Detection Applications

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3