The Application of an Evolutionary Algorithm to the Optimization of a Mesoscale Meteorological Model

Author:

O’Steen Lance1,Werth David1

Affiliation:

1. Savannah River National Laboratory, Aiken, South Carolina

Abstract

Abstract It is shown that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root-mean-square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). It is found that the optimization can be done with relatively modest computer resources; therefore, operational implementation is possible. The overall number of simulations needed to obtain a specific reduction of the cost function is found to depend strongly on the procedure used to perturb the “child” parameters relative to their “parents” within the evolutionary algorithm. In addition, the choice of meteorological variables that are included in the rms error and their relative weighting are also found to be important factors in the optimization.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference16 articles.

1. Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer.;André;J. Atmos. Sci.,1978

2. Evolutionary computation: Comments on the history and current state.;Bäck;IEEE Trans. Evol. Comput.,1997

3. The VTMX 2000 campaign.;Doran;Bull. Amer. Meteor. Soc.,2002

4. Evolutionary Computation: Principles and Practice for Signal Processing.;Fogel,2000

5. A demonstration of coupled receptor/dispersion modeling with a genetic algorithm.;Haupt;Atmos. Environ.,2005

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3