Comparison of TRMM Precipitation Retrievals with Rain Gauge Data from Ocean Buoys

Author:

Bowman Kenneth P.1

Affiliation:

1. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Abstract

Abstract Four years of precipitation retrievals from the Tropical Rainfall Measuring Mission (TRMM) satellite are compared with data from 25 surface rain gauges on the National Oceanic and Atmospheric Administration/Pacific Marine Environment Laboratory (NOAA/PMEL) Tropical Atmosphere–Ocean Array/Triangle Trans-Ocean Buoy Network TAO/TRITON buoy array in the tropical Pacific. The buoy gauges have a significant advantage over island-based gauges for this purpose because they represent open-ocean conditions and are not affected by island orography or surface heating. Because precipitation is correlated with itself in both space and time, comparisons between the two data sources can be improved by properly averaging in space and/or time. When comparing gauges with individual satellite overpasses, the optimal averaging time for the gauge (centered on the satellite overpass time) depends on the area over which the satellite data are averaged. For 1° × 1° areas there is a broad maximum in the correlation for gauge-averaging periods of ∼2 to 10 h. Maximum correlations r are in the range 0.6 to 0.7. For larger satellite averaging areas, correlations with the gauges are smaller (because a single gauge becomes less representative of the precipitation in the box) and the optimum gauge-averaging time is longer. For individual satellite overpasses averaged over a 1° × 1° box, the relative rms difference with respect to a rain gauge centered in the box is ∼200% to 300%. For 32-day time means over 1° × 1° boxes, the relative rms difference between the satellite data and a gauge is in the range of 40% to 70%. The bias between the gauges and the satellite retrievals is estimated by correlating the long-term time-mean precipitation estimates across the set of gauges. The TRMM Microwave Imager (TMI) gives an r2 of 0.97 and a slope of 0.970, indicating very little bias with respect to the gauges. For the Precipitation Radar (PR) the comparable numbers are 0.92 and 0.699. The results of this study are consistent with the sampling error estimates from the statistical model of Bell and Kundu.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3