Performance Evaluation of GPM IMERG Precipitation Products over the Tropical Oceans Using Buoys

Author:

Pradhan Rajani Kumar1ORCID,Markonis Yannis1

Affiliation:

1. a Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

Abstract

Abstract The majority of global precipitation falls in tropical oceans. Nonetheless, due to the lack of in situ precipitation measurements, the number of studies over the tropical oceans remains limited. Similarly, the performance of IMERG products over the tropical oceans is unknown. In this context, this study quantitatively evaluates the 20 years (2001–20) of IMERG V06 Early, Late, and Final products against the in situ buoys’ estimates using the pixel–point approach at a daily scale across the tropical oceans. Results show that IMERG represents well the mean spatial pattern and spatial variation of precipitation, though significant differences exist in the magnitude of precipitation amount. Overall, IMERG notably overestimates precipitation across the tropical ocean, with maxima over the western Pacific and Indian Oceans, while it performs better over the eastern Pacific and Atlantic Oceans. Moreover, irrespective of the region, IMERG sufficiently detects precipitation events (i.e., >0.1 mm day−1) for high-precipitation regions, though it significantly overestimates the magnitude. Despite IMERG’s detection issues of precipitation events over the regions with lower precipitation, it is in good agreement with the buoys in total precipitation estimation. The positive hit bias and false alarm bias are the major contributions to the overall total positive bias. Furthermore, the detection capability of IMERG tends to decline with increasing precipitation rates. In terms of IMERG runs, the IMERG Final product performs slightly better than the Early and Late runs. More detailed studies over the tropical oceans are required to better characterize the biases and their sources.

Funder

Fakulta Životního Prostředí, Česká Zemědělská Univerzita v Praze

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference61 articles.

1. On the spatial and temporal sampling errors of remotely sensed precipitation products;Behrangi, A.,2017

2. On the quantification of oceanic rainfall using spaceborne sensors;Behrangi, A.,2012

3. Comparison of monthly IMERG precipitation estimates with PACRAIN atoll observations;Bolvin, D. T.,2021

4. The PIRATA program: History, accomplishments, and future directions;Bourlès, B.,2008

5. Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys;Bowman, K. P.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3