The Spectral Ice Habit Prediction System (SHIPS). Part IV: Box Model Simulations of the Habit-Dependent Aggregation Process

Author:

Hashino Tempei1,Tripoli Gregory J.1

Affiliation:

1. University of Wisconsin—Madison, Madison, Wisconsin

Abstract

Abstract The purpose of this paper is to assess the prediction of particle properties of aggregates and particle size distributions with the Spectral Ice Habit Prediction System (SHIPS) and to investigate the effects of crystal habits on aggregation process. Aggregation processes of ice particles are critical to the understanding of precipitation and the radiative signatures of cloud systems. Conventional approaches taken in cloud-resolving models (CRMs) are not ideal to study the effects of crystal habits on aggregation processes because the properties of aggregates have to be assumed beforehand. As described in Part III, SHIPS solves the stochastic collection equation along with particle property variables that contain information about crystal habits and maximum dimensions of aggregates. This approach makes it possible to simulate properties of aggregates explicitly and continuously in CRMs according to the crystal habits. The aggregation simulations were implemented in a simple model setup, assuming seven crystal habits and several initial particle size distributions (PSDs). The predicted PSDs showed good agreement with observations after rescaling except for the large-size end. The ice particle properties predicted by the model, such as the mass–dimensional (m-D) relationship and the relationship between diameter of aggregates and number of component crystals in an aggregate, were found to be quantitatively similar to those observed. Furthermore, these predictions were dependent on the initial PSDs and habits. A simple model for the growth of a particle’s maximum dimension was able to simulate the typically observed fractal dimension of aggregates when an observed value of the separation ratio of two particles was used. A detailed analysis of the collection kernel indicates that the m-D relationship unique to each crystal habit has a large impact on the growth rate of aggregates through the cross-sectional area or terminal velocity difference, depending on the initial equivalent particle distribution. A significant decrease in terminal velocity differences was found in the inertial flow regime for all the habits but the constant-density sphere. It led to formation of a local maximum in the collection kernel and, in turn, formed an identifiable mode in the PSDs. Remaining issues that must be addressed in order to improve the aggregation simulation with the quasi-stochastic model are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3