The South China Sea Monsoon Experiment—Boundary Layer Height (SCSMEX-BLH): Experimental Design and Preliminary Results

Author:

Huang Huijun1,Mao Weikang1

Affiliation:

1. Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, and Joint Open Laboratory of Marine Meteorology, Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China

Abstract

Abstract Knowing the relationship between local convective precipitation and boundary layer processes is critical for forecasting rainstorms. For the South China Sea area, such a forecast is particularly important during the monsoon season. During such a season, the authors examined the boundary layer features at three sites as part of the South China Sea Monsoon Experiment—Boundary Layer Height (SCSMEX-BLH) experiment. The sites are spread from inland to over sea along a 43.4-km line. Here the authors analyze SCSMEX-BLH data from an intensive observing period that includes a convectively suppressed (inactive) period, a period influenced by a tropical storm, and a convectively active monsoon period. Some preliminary findings include the following: 1) The absorption of shortwave radiation over the sea is the primary driver of the land–sea temperature difference. The difference produces a diurnal variation below 400 m, with a warmer surface layer over the coast at night. 2) In the inactive and storm periods, the sensible heat flux is larger than that in the active period, whereas in the active period, the heat flux (primarily latent heat flux) over sea is significant. Also in the active period, the depth of the mixed layer inland is smaller than that in other periods, but the depth on the coast is always higher than that in other periods. 3) In the active period at night, as a monsoon vapor surge advects horizontally over the warm sea surface, a large latent heat flux driven by strong winds aids the growth of marine cumulus, which eventually develop into inland cumulonimbus bringing inland rainfall.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3