Atmospheric rivers impacting mainland China and Australia: climatology and interannual variations

Author:

Wu Xian-Yun,Ye Chengzhi,He Weiwei,Chen Jingjing,Xu Lin,Zhang Huqiang

Abstract

In this study we have built two atmospheric river (AR) databases for mainland China and Australia using Japanese 55-year Reanalysis data with manual detections. By manually checking the magnitude, shape and orientation of vertically integrated vapour transport fields calculated from the reanalysis data and analysing its embedded synoptic patterns and other meteorological information, we detected 625 AR events over mainland China during 1986–2016 and 576 AR events over the Australian continent during 1977–2016. This manuscript documents the mean climatology, spatial distributions, seasonality and interannual variations of ARs occurring in these two regions. We also assessed possible underlying drivers influencing AR activities. Our results showed that: (i) most ARs over mainland China occured in its lower latitudes, including southern, eastern and central China, but ARs also reached its far north and northeast regions. In Australia, most ARs occurred in the states of Western Australia, South Australia and part of New South Wales and Victoria. These regions of high AR frequencies also frequently experienced Northwest Cloud Bands during the cool season; (ii) ARs in China reached their peak during the East Asian summer monsoon season (May–September). This was also the period when AR frequency in the Australian region tended to be higher, but its seasonal variation was weaker than in China; (iii) ARs exhibited large interannual variations in both regions and a declining trend in central and eastern China; (iv) there was a notable influence of tropical sea surface temperatures (SSTs) on the AR activities in the region, with the ARs in Australia being particularly affected by Indian Ocean SSTs and El-Niño Southern Oscillation (ENSO) in the tropical Pacific. ARs in China appear to be affected by ENSO in its decaying phase, with more ARs likely occurring in boreal summer following a peak El Nino during its preceding winter; (v) the Western Pacific Subtropical High plays a dominant role in forming major moisture transport channels for ARs in China, and South China Sea appears to be a key moisture source. In the Australian region, warm and moist air from the eastern part of the tropical Indian Ocean plays a significant role for ARs in the western part of the continent. In addition, moisture transport from the Coral Sea region was an important moisture source for ARs in its east. Results from this study have demonstrated the value of using AR diagnosis to better understand processes governing climate variations in the A–A region.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3