Statistical–Dynamical Seasonal Forecast of North Atlantic and U.S. Landfalling Tropical Cyclones Using the High-Resolution GFDL FLOR Coupled Model

Author:

Murakami Hiroyuki1,Villarini Gabriele2,Vecchi Gabriel A.1,Zhang Wei1,Gudgel Richard3

Affiliation:

1. National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

2. IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

3. National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract Retrospective seasonal forecasts of North Atlantic tropical cyclone (TC) activity over the period 1980–2014 are conducted using a GFDL high-resolution coupled climate model [Forecast-Oriented Low Ocean Resolution (FLOR)]. The focus is on basin-total TC and U.S. landfall frequency. The correlations between observed and model predicted basin-total TC counts range from 0.4 to 0.6 depending on the month of the initial forecast. The correlation values for U.S. landfalling activity based on individual TCs tracked from the model are smaller and between 0.1 and 0.4. Given the limited skill from the model, statistical methods are used to complement the dynamical seasonal TC prediction from the FLOR model. Observed and predicted TC tracks were classified into four groups using fuzzy c-mean clustering to evaluate the model’s predictability in observed classification of TC tracks. Analyses revealed that the FLOR model has the highest skill in predicting TC frequency for the cluster of TCs that tracks through the Caribbean and the Gulf of Mexico. New hybrid models are developed to improve the prediction of observed basin-total TC and landfall TC frequencies. These models use large-scale climate predictors from the FLOR model as predictors for generalized linear models. The hybrid models show considerable improvements in the skill in predicting the basin-total TC frequencies relative to the dynamical model. The new hybrid model shows correlation coefficients as high as 0.75 for basinwide TC counts from the first two lead months and retains values around 0.50 even at the 6-month lead forecast. The hybrid model also shows comparable or higher skill in forecasting U.S. landfalling TCs relative to the dynamical predictions. The correlation coefficient is about 0.5 for the 2–5-month lead times.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference93 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3