Experimental Dynamical Seasonal Forecasts of Tropical Cyclone Activity at IRI

Author:

Camargo Suzana J.1,Barnston Anthony G.1

Affiliation:

1. International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Abstract

Abstract The International Research Institute for Climate and Society (IRI) has been issuing experimental seasonal tropical cyclone activity forecasts for several ocean basins since early 2003. In this paper the method used to obtain these forecasts is described and the forecast performance is evaluated. The forecasts are based on tropical cyclone–like features detected and tracked in a low-resolution climate model, namely ECHAM4.5. The simulation skill of the model using historical observed sea surface temperatures (SSTs) over several decades, as well as with SST anomalies persisted from the previous month’s observations, is discussed. These simulation skills are compared with skills of purely statistically based hindcasts using as predictors recently observed SSTs. For the recent 6-yr period during which real-time forecasts have been made, the skill of the raw model output is compared with that of the subjectively modified probabilistic forecasts actually issued. Despite variations from one basin to another, the levels of hindcast skill for the dynamical and statistical forecast approaches are found, overall, to be approximately equivalent at fairly modest but statistically significant levels. The dynamical forecasts require statistical postprossessing (calibration) to be competitive with, and in some circumstances superior to, the statistical models. Skill levels decrease only slowly with increasing lead time up to 2–3 months. During the recent period of real-time forecasts, the issued forecasts have had higher probabilistic skill than the raw model output, due to the forecasters’ subjective elimination of the “overconfidence” bias in the model’s forecasts. Prospects for the future improvement of dynamical tropical cyclone prediction are considered.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3