Affiliation:
1. Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
2. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
Abstract
Abstract
Microphysics parameterization becomes increasingly important as the model grid spacing increases toward convection-resolving scales. The performance of several partially or fully two-moment (2M) schemes within the Weather Research and Forecasting (WRF) Model, version 3.5.1, chosen because of their well-documented advantages over one-moment (1M) schemes, is evaluated with respect to their ability in producing the well-known polarimetric radar signatures found within supercell storms. Such signatures include the ZDR and KDP columns, the ZDR arc, the midlevel ZDR and ρHV rings, the hail signature in the forward-flank downdraft, and the KDP foot. Polarimetric variables are computed from WRF Model output using a polarimetric radar simulator. It is found that microphysics schemes with a 1M rimed-ice category are unable to simulate the ZDR arc, despite containing a 2M rain category. It is also found that a hail-like rimed-ice category (in addition to graupel) may be necessary to reproduce the observed hail signature. For the microphysics schemes that only contain a graupel-like rimed-ice category, only very wet graupel particles are able to reach the lowest model level, which did not adequately reduce ZDR in this signature. The most realistic signatures overall are found with microphysics schemes that are fully 2M with a separate hail category.
Publisher
American Meteorological Society
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献