Biases and Skill of Four Two-Moment Bulk Microphysics Schemes in Convection-Allowing Forecasts for the 2018 Hazardous Weather Testbed Spring Forecasting Experiment Period

Author:

Johnson Marcus12ORCID,Xue Ming12,Jung Youngsun12

Affiliation:

1. a Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

2. b School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract A proof-of-concept systematic evaluation of convective hazards is applied to short-term (1–6 h) forecasts using the Morrison, National Severe Storms Laboratory (NSSL), Predicted Particle Properties (P3), and Thompson two-moment microphysics schemes for the 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiment (HWT SFE) period (hereafter “MORR,” “NSSL,” “P3,” and “THOM” experiments, respectively). Four convective line cases are highlighted to elaborate on relative experiment biases/skill. Composite reflectivity and 1-h accumulated precipitation are examined to determine storm coverage/precipitation biases/skill utilizing point-based verification with a neighborhood. Simulated 1–6-km updraft helicity and observed 3–6-km azimuthal shear and MESH are examined to consider simulated rotation and hail core prediction with object-based scores. Over the full season, MORR displays little overall storm coverage bias relative to NSSL, P3, and THOM underprediction. The equitable threat score (ETS) and fractions skill score (FSS) of P3 are lower than the other experiments. P3 and THOM underpredict convective regions with intense reflectivity relative to MORR and NSSL overprediction. All experiments underpredict precipitation amounts. P3 light precipitation FSS is lower than other experiments. Rotation object verification exhibits sensitivity to microphysics experiments, as microphysics has an indirect influence on storm dynamics. While P3 has the largest hail object underprediction, all experiments grossly overpredict the number of hail objects in convective line cases despite forecast objects defined with the same product (MESH) and threshold as observations. The importance of microphysics ice parameterization and ongoing scheme updates highlight the need to apply this verification framework to optimal/updated schemes before optimizing ensemble design.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference76 articles.

1. Spatial techniques applied to precipitation ensemble forecasts: From verification results to probabilistic products;Ben Bouallègue, Z.,2014

2. Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model;Benjamin, S. G.,2004a

3. An hourly assimilation-forecast cycle: The RUC;Benjamin, S. G.,2004b

4. Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization;Benjamin, S. G.,2016a

5. A North American hourly assimilation and model forecast cycle: The Rapid Refresh;Benjamin, S. G.,2016b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3