Examining the Potential Impact of SWOT Observations in an Ocean Analysis–Forecasting System

Author:

Carrier Matthew J.1,Ngodock Hans E.1,Smith Scott R.1,Souopgui Innocent2,Bartels Brent3

Affiliation:

1. Naval Research Laboratory, Stennis Space Center, Mississippi

2. Department of Marine Sciences, University of Southern Mississippi, Stennis Space Center, Mississippi

3. Vencore, Inc., Chantilly, Virginia

Abstract

NASA’s Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide observations of sea surface height anomaly (SSHA) at a significantly higher spatial resolution than current satellite altimeters. This new observation type is expected to improve the ocean model mesoscale circulation. The potential improvement that SWOT will provide is investigated in this work by way of twin-data assimilation experiments using the Navy Coastal Ocean Model four-dimensional variational data assimilation (NCOM-4DVAR) system in its weak constraint formulation. Simulated SWOT observations are sampled from an ocean model run (referred to as the “nature” run) using an observation-simulator program provided by the SWOT science team. The SWOT simulator provides realistic spatial coverage, resolution, and noise characteristics based on the expected performance of the actual satellite. Twin-data assimilation experiments are run for a two-month period during which simulated observations are assimilated into a separate model (known as the background model) in a series of 96-h windows. The final condition of each analysis window is used to initialize a new 96-h forecast, and each forecast is compared to the nature run to determine the impact of the assimilated data. It is demonstrated here that the simulated SWOT observations help to constrain the model mesoscale to be more consistent with the nature run than the assimilation of traditional altimeter observations alone. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model forecast of mesoscale features and surface ocean velocity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3