Warm-Sector Heavy Rainfall in Southern China and Its WRF Simulation Evaluation: A Low-Level-Jet Perspective

Author:

Zhang Murong1,Meng Zhiyong1

Affiliation:

1. Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

Abstract Warm-sector heavy rainfall in southern China refers to the heavy rainfall that occurs within the warm sector hundreds of kilometers south of a front or without a front during April–June, characterized by poor predictability and a close relationship with low-level jets (LLJs). Based on 45 warm-sector heavy rainfall episodes in 2013 and 2014 in southern China, this study examines their general characteristics and evaluates the performance of convection-permitting WRF Model simulations from an LLJ perspective. The results show that 64% of the warm-sector heavy rainfall episodes are associated with an LLJ (LLJ type) and 36% are not (no-LLJ type). The LLJ type is distinct from the no-LLJ type, with large rainfall accumulation along the coastal area. It is more common for LLJs to occur at both 800 and 925 hPa in the LLJ type, where there is a wide 800-hPa LLJ west of Guangdong Province and two 925-hPa LLJs over Beibu Gulf and the South China Sea (SCS). The coastal convergence associated with the terminus of the LLJ on 925 hPa is conducive to the coastal rainfall. WRF generally presents lower QPF skill in the LLJ type than in the no-LLJ type, due to the severe underestimation of coastal rainfall. The QPF skill of the LLJ type is significantly correlated with the forecast accuracy of LLJs, especially at 925 hPa. The north bias of the simulated LLJ on 925 hPa over the SCS and the associated overestimation of wind speed below ~900 hPa over the inland region weaken the coastal convergence and eventually lead to the underestimation in coastal precipitation.

Funder

China National Funds for Distinguished Young Scientists

National Natural Science Foundation of China

Major International Joint Research Programme

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3