Could Developing Frontal Rainfall Influence Warm‐Sector Rainfall?

Author:

Yang Hongpei123ORCID,Du Yu123ORCID,Chen Zijian123ORCID,Fang Junying4ORCID

Affiliation:

1. School of Atmospheric Sciences Sun Yat‐Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China

2. Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies Sun Yat‐Sen University Zhuhai China

3. Key Laboratory of Tropical Atmosphere‐Ocean System Sun Yat‐Sen University Ministry of Education Zhuhai China

4. Institute of Tropical and Marine Meteorology China Meteorological Administration Guangzhou China

Abstract

AbstractForecasting warm‐sector rainfall (WR) remains a major challenge, primarily due to weak synoptic forcing. Through cloud‐permitting numerical simulations, in addition to direct triggering mechanism from low‐level jets, we identify the important role of gravity waves in a heavy WR event in South China via convective preconditioning. The preconditioning manifests as mid‐level moistening and destabilization with wave‐like variations. This process is driven by fast‐propagating (∼24 m s−1) n = 2 waves, associated with lower‐tropospheric ascents and upper‐tropospheric descents. Waves are generated during the evolution of northern frontal rainfall (FR). As FR intensifies, surges in low‐level diabatic cooling mainly resulting from microphysical processes, trigger n = 2 waves, which further precondition the environment along their path. In contrast, a sensitivity experiment involving stably developing FR fails to reproduce the preconditioning process by waves and the subsequent occurrence of WR. Overall, our study illuminates a new pathway through which FR significantly influences WR via gravity waves.

Funder

National Natural Science Foundation of China

Sun Yat-sen University

China Meteorological Administration

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3