Lightning Data Assimilation Scheme in a 4DVAR System and Its Impact on Very Short-Term Convective Forecasting

Author:

Xiao Xian1,Sun Juanzhen2,Qie Xiushu34,Ying Zhuming2,Ji Lei5,Chen Mingxuan1,Zhang Lina6

Affiliation:

1. a Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

2. b National Center for Atmospheric Research, Boulder, Colorado

3. c Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

4. d College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, China

5. e School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China

6. f Training Center, China Meteorological Administration, Beijing, China

Abstract

AbstractA proof-of-concept method for the assimilation of total lightning observations in the 4DVAR framework is proposed and implemented into the Variational Doppler Radar Analysis System (VDRAS). Its performance is evaluated for the very short-term precipitation forecasts of a localized convective event over northeastern China. The lightning DA scheme assimilated pseudo-observations for vertical velocity fields derived from observed total lightning rates and statistically computed vertical velocity profile from VDRAS analysis data. To reduce representative errors of the derived vertical velocity, a distance-weighted horizontal interpolation is applied to the input data prior to the DA. The case study reveals that although 0–2-h precipitation nowcasts are improved by assimilating lightning data alone compared to CTRL (no radar or lightning) and RAD (radar only), better results are obtained when the lightning data are assimilated with radar data simultaneously. The assimilation of both data sources results in improved dynamical consistency with enhanced updraft and latent heat as well as improved moisture distributions. Additional experiments are conducted to evaluate the sensitivity of the combined DA scheme to varied vertical velocity profiles, radii of horizontal interpolation, binning time intervals, and relationships used to estimate the maximum vertical velocity from lightning flash rates. It is shown that the scheme is robust to these variations with both radar and lightning assimilated data.

Funder

the National Key R&D Program of China

the National Basic Research Program of China

the National Natural Science Foundation of China

the Beijing Natural Science Foundation

the China scholarship council

the Beijing Meteorological Bureau Science and Technology Project

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3