Hybrid Gain Data Assimilation Using Variational Corrections in the Subspace Orthogonal to the Ensemble

Author:

Chang Chih-Chien1,Penny Stephen G.2,Yang Shu-Chih3

Affiliation:

1. Department of Atmospheric Sciences, National Central University, Jhongli, Taiwan

2. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado, and RIKEN Center for Computational Science, Kobe, Japan

3. Department of Atmospheric Sciences, National Central University, Jhongli, Taiwan, and RIKEN Center for Computational Science, Kobe, Japan

Abstract

Abstract The viability of a parameterless hybrid data assimilation algorithm is investigated. As an alternative to the traditional hybrid covariance scheme, hybrid gain data assimilation (HGDA) was proposed to blend the gain matrix derived from the variational method and the ensemble-based Kalman filter (EnKF). A previously proposed HGDA algorithm uses a two-step process applying the EnKF with a variational update. The algorithm is modified here to limit the variational correction to the subspace orthogonal to the ensemble perturbation subspace without the use of a hybrid weighting parameter, as the optimization of such a parameter is nontrivial. The modified HGDA algorithm is investigated with a quasigeostrophic (QG) model. Results indicate that when the climatological background error covariance matrix B and the observation error covariance R are well estimated, state estimates from the parameterless HGDA are more accurate than the parameter-dependent HGDA. The parameterless HGDA not only has potential advantages over the standard HGDA as an online data assimilation algorithm but can also serve as a valuable diagnostic tool for tuning the B and R matrices. It is also found that in this QG model, the empirically best static B matrix for the stand-alone 3DVAR has high variance at larger spatial scales, which degrades the accuracy of the HGDA systems and may not be the best choice for hybrid methods in general. A comparison of defining the orthogonal subspace globally or locally demonstrates that global orthogonality is more advantageous for stabilizing the hybrid system and maintains large-scale balances.

Funder

Ministry of Science and Technology, Taiwan

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3