EnKF and Hybrid Gain Ensemble Data Assimilation. Part II: EnKF and Hybrid Gain Results

Author:

Bonavita Massimo1,Hamrud Mats1,Isaksen Lars1

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract The desire to do detailed comparisons between variational and more scalable ensemble-based data assimilation systems in a semioperational environment has led to the development of a state-of-the-art EnKF system at ECMWF, which has been described in Part I of this two-part study. In this part the performance of the EnKF system is evaluated compared to a 4DVar of similar resolution. It is found that there is not a major difference between the forecast skill of the two systems. However, similarly to the operational hybrid 4DVar–EDA, a hybrid EnKF–variational system [which we refer to as the hybrid gain ensemble data assimilation (HG-EnDA)] is capable of significantly outperforming both component systems. The HG-EnDA has been implemented with relatively little effort following Penny’s recent study. Results of numerical experimentation comparing the HG-EnDA with the hybrid 4DVar–EDA used operationally at ECMWF are presented, together with diagnostic results, which help characterize the behavior of the proposed ensemble data assimilation system. A discussion of these results in the context of hybrid data assimilation in global NWP is also provided.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3