Resolving the Horizontal Direction of Internal Tide Generation: Global Application for the M2 Tide’s First Mode

Author:

Pollmann Friederike1ORCID,Nycander Jonas2

Affiliation:

1. a Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Hamburg, Germany

2. b Department of Meteorology (MISU), Stockholms Universitet, Stockholm, Sweden

Abstract

Abstract Breaking internal tides contribute substantially to small-scale turbulent mixing in the ocean interior and hence to maintaining the large-scale overturning circulation. How much internal tide energy is available for ocean mixing can be estimated by using semianalytical methods based on linear theory. Until recently, a method resolving the horizontal direction of the internal waves generated by conversion of the barotropic tide was lacking. We here present the first global application of such a method to the first vertical mode of the principal lunar semidiurnal internal tide. We also show that the effect of supercritical slopes on the modally decomposed internal tides is different than previously suggested. To deal with this the continental shelf and the shelf slope are masked in the global computation. The global energy conversion obtained agrees roughly with the previous results by Falahat et al. if the mask is applied to their result, which decreases their energy conversion by half. Thus, around half of the energy conversion obtained by their linear calculations occurs at continental slopes and shelves, where linear theory tends to break down. The barotropic-to-baroclinic energy flux at subcritical slopes away from the continental margins is shown to vary substantially with direction depending on the shape and orientation of topographic obstacles and the direction of the local tidal currents. Taking this additional information into account in tidal mixing parameterizations could have important ramifications for vertical mixing and water mass properties in global numerical simulations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Oceanography

Reference46 articles.

1. Incorporating tides and internal gravity waves within global ocean general circulation models: A review;Arbic, B. K.,2022

2. Tidal conversion by supercritical topography;Balmforth, N. J.,2009

3. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS;Becker, J.,2009

4. Lee waves in stratified flows with simple harmonic time dependence;Bell, T.,1975a

5. Topographically generated internal waves in the open ocean;Bell, T.,1975b

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observed Structure of an Internal Tide Beam Over the Mid‐Atlantic Ridge;Journal of Geophysical Research: Oceans;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3