Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach

Author:

Burke Eleanor J.1,Jones Chris D.1,Koven Charles D.2

Affiliation:

1. Met Office Hadley Centre, Exeter, United Kingdom

2. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Abstract

Abstract Under climate change, thawing permafrost may cause a release of carbon, which has a positive feedback on the climate. The permafrost-carbon climate response (γPF) is the additional permafrost-carbon made vulnerable to decomposition per degree of global temperature increase. A simple framework was adopted to estimate γPF using the database for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected changes in the annual maximum active layer thicknesses (ALTmax) over the twenty-first century were quantified using CMIP5 soil temperatures. These changes were combined with the observed distribution of soil organic carbon and its potential decomposability to give γPF. This estimate of γPF is dependent on the biases in the simulated present-day permafrost. This dependency was reduced by combining a reference estimate of the present-day ALTmax with an estimate of the sensitivity of ALTmax to temperature from the CMIP5 models. In this case, γPF was from −6 to −66 PgC K−1(5th–95th percentile) with a radiative forcing of 0.03–0.29 W m−2 K−1. This range is mainly caused by uncertainties in the amount of soil carbon deeper in the soil profile and whether it thaws over the time scales under consideration. These results suggest that including permafrost-carbon within climate models will lead to an increase in the positive global carbon climate feedback. Under future climate change the northern high-latitude permafrost region is expected to be a small sink of carbon. Adding the permafrost-carbon response is likely to change this region to a source of carbon.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3