Geographic Aspects of Temperature and Concentration Feedbacks in the Carbon Budget

Author:

Boer G. J.1,Arora V.1

Affiliation:

1. Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada

Abstract

Abstract The geographical distribution of feedback processes in the carbon budget is investigated in a manner that parallels that for climate feedback/sensitivity in the energy budget. Simulations for a range of emission scenarios, made with the Canadian Centre for Climate Modelling and Analysis (CCCma) earth system model (CanESM1), are the basis of the analysis. Anthropogenic CO2 emissions are concentrated in the Northern Hemisphere and provide the forcing for changes to the atmospheric carbon budget. Transports redistribute the emitted CO2 globally where local feedback processes act to enhance (positive feedback) or suppress (negative feedback) local CO2 amounts in response to changes in CO2 concentration and temperature. An increased uptake of CO2 by the land and ocean acts to counteract increased atmospheric CO2 concentrations so that “carbon–concentration” feedbacks are broadly negative over the twenty-first century. Largest values are found over land and particularly in tropical regions where CO2 acts to fertilize plant growth. Extratropical land also takes up CO2 but here the effect is limited by cooler temperatures. Oceans play a lesser negative feedback role with comparatively weak uptake associated with an increase in the atmosphere–ocean CO2 gradient rather than with oceanic biological activity. The effect of CO2-induced temperature increase is, by contrast, to increase atmospheric CO2 on average and so represents an overall positive “carbon–temperature” feedback. Although the average is positive, local regions of both positive and negative carbon–temperature feedback are seen over land as a consequence of the competition between changes in biological productivity and respiration. Positive carbon–temperature feedback is found over most tropical land while mid–high-latitude land exhibits negative feedback. There are also regions of positive and negative oceanic carbon–temperature feedback in the eastern tropical Pacific. The geographical patterns of carbon–concentration and carbon–temperature feedbacks are comparatively robust across the range of emission scenarios used, although their magnitudes are somewhat less robust and scale nonlinearly as a consequence of the large CO2 concentration changes engendered by the scenarios. The feedback patterns deduced nevertheless serve to illustrate the localized carbon feedback processes in the climate system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3