Projected Changes in Climate Extremes over the Northeastern United States

Author:

Ning Liang1,Riddle Emily E.2,Bradley Raymond S.3

Affiliation:

1. Key Laboratory of Virtual Geographic Environment Ministry of Education, School of Geography Science, and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex System, School of Mathematical Science, Nanjing Normal University, Nanjing, China, and Northeast Climate Science Center, and Department of Geosciences, University of Massachusetts Amherst, Amherst, Massachusetts, and Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,...

2. Department of Geoscience, University of Massachusetts Amherst, Amherst, Massachusetts

3. Northeast Climate Science Center, and Department of Geosciences, University of Massachusetts Amherst, Amherst, Massachusetts

Abstract

Projections of historical and future changes in climate extremes are examined by applying the bias-correction spatial disaggregation (BCSD) statistical downscaling method to five general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). For this analysis, 11 extreme temperature and precipitation indices that are relevant across multiple disciplines (e.g., agriculture and conservation) are chosen. Over the historical period, the simulated means, variances, and cumulative distribution functions (CDFs) of each of the 11 indices are first compared with observations, and the performance of the downscaling method is quantitatively evaluated. For the future period, the ensemble average of the five GCM simulations points to more warm extremes, fewer cold extremes, and more precipitation extremes with greater intensities under all three scenarios. The changes are larger under higher emissions scenarios. The inter-GCM uncertainties and changes in probability distributions are also assessed. Changes in the probability distributions indicate an increase in both the number and interannual variability of future climate extreme events. The potential deficiencies of the method in projecting future extremes are also discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3