Downscaling Extremes: An Intercomparison of Multiple Methods for Future Climate

Author:

Bürger G.1,Sobie S. R.2,Cannon A. J.2,Werner A. T.2,Murdock T. Q.2

Affiliation:

1. Universität Potsdam, Potsdam, Germany, and Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada

2. Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract This study follows up on a previous downscaling intercomparison for present climate. Using a larger set of eight methods the authors downscale atmospheric fields representing present (1981–2000) and future (2046–65) conditions, as simulated by six global climate models following three emission scenarios. Local extremes were studied at 20 locations in British Columbia as measured by the same set of 27 indices, ClimDEX, as in the precursor study. Present and future simulations give 2 × 3 × 6 × 8 × 20 × 27 = 155 520 index climatologies whose analysis in terms of mean change and variation is the purpose of this study. The mean change generally reinforces what is to be expected in a warmer climate: that extreme cold events become less frequent and extreme warm events become more frequent, and that there are signs of more frequent precipitation extremes. There is considerable variation, however, about this tendency, caused by the influence of scenario, climate model, downscaling method, and location. This is analyzed using standard statistical techniques such as analysis of variance and multidimensional scaling, along with an assessment of the influence of each modeling component on the overall variation of the simulated change. It is found that downscaling generally has the strongest influence, followed by climate model; location and scenario have only a minor influence. The influence of downscaling could be traced back in part to various issues related to the methods, such as the quality of simulated variability or the dependence on predictors. Using only methods validated in the precursor study considerably reduced the influence of downscaling, underpinning the general need for method verification.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3