The Changing Cryosphere: Pan-Arctic Snow Trends (1979–2009)

Author:

Liston Glen E.1,Hiemstra Christopher A.2

Affiliation:

1. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

2. U.S. Army Cold Regions Research and Engineering Laboratory, Ft. Wainwright, Alaska

Abstract

Abstract Arctic snow presence, absence, properties, and water amount are key components of Earth’s changing climate system that incur far-reaching physical and biological ramifications. Recent dataset and modeling developments permit relatively high-resolution (10-km horizontal grid; 3-h time step) pan-Arctic snow estimates for 1979–2009. Using MicroMet and SnowModel in conjunction with land cover, topography, and 30 years of the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis data, a distributed snow-related dataset was created including air temperature, snow precipitation, snow-season timing and length, maximum snow water equivalent (SWE) depth, average snow density, snow sublimation, and rain-on-snow events. Regional variability is a dominant feature of the modeled snow-property trends. Both positive and negative regional trends are distributed throughout the pan-Arctic domain, featuring, for example, spatially distinct areas of increasing and decreasing SWE or snow season length. In spite of strong regional variability, the data clearly show a general snow decrease throughout the Arctic: maximum winter SWE has decreased, snow-cover onset is later, the snow-free date in spring is earlier, and snow-cover duration has decreased. The domain-averaged air temperature trend when snow was on the ground was 0.17°C decade−1 with minimum and maximum regional trends of −0.55° and 0.78°C decade−1, respectively. The trends for total number of snow days in a year averaged −2.49 days decade−1 with minimum and maximum regional trends of −17.21 and 7.19 days decade−1, respectively. The average trend for peak SWE in a snow season was −0.17 cm decade−1 with minimum and maximum regional trends of −2.50 and 5.70 cm decade−1, respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3