Extreme Arctic Weather and Community Impacts in Nunavut: A Case Study of One Winter’s Storms and Lessons for Local Climate Change Preparedness

Author:

Fox Shari1,Crawford Alex2,McCrystall Michelle2,Stroeve Julienne2,Lukovich Jennifer2,Loeb Nicole2,Natanine Jerry3,Serreze Mark1

Affiliation:

1. a National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

2. b Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada

3. c Municipality of Clyde River, Clyde River, Nunavut, Canada

Abstract

Abstract Arctic communities are experienced with severe weather, but impacts can still be serious, particularly when the intensity or persistence of hazardous conditions is extreme. Such was the case for the community of Clyde River (Kangiqtugaapik), Nunavut, Canada, which experienced 33 blizzard days during winter 2021/22—likely the most at Clyde River since at least 1978/79. Blizzard conditions resulted from unusually frequent high winds rather than excessive snowfall. The most severe stretch included eight blizzard days over an 11-day period, with top wind gusts of 98 km h−1. Winds caused severe drifting, covering homes and blocking streets. Broken heavy equipment, including snow-clearing machines, compounded the impacts, leaving homes without essential services like water delivery and sewage pump-out for days. Residents reported the storms and resulting impacts as some of the worst in memory. The drifting and volume of snow, combined with the lack of available resources to manage it, obliged the community to declare a state of emergency. Projections of increased Arctic precipitation and extreme weather events points to the need for communities to have proper resources and supports, including preparedness and adaptation and mitigation strategies, so they can be better equipped to handle storm and blizzard impacts such as those experienced at Clyde River in the winter of 2021/22. Additional steps that can be implemented to better support and prepare communities include investing in preparedness planning, expanded and enhanced weather information and services, community land-based programming to transfer Inuit knowledge and skills, assessing the usefulness of current forecasts, and new approaches to community planning. Significance Statement In this study, we consider the winter of 2021/22, during which the community of Clyde River (Kangiqtugaapik), Nunavut experienced 33 days with blizzard conditions—more than any other year since at least 1978/79. Blizzards are characterized by strong winds and blowing snow. Low visibility impedes travel, and drifting snow blocks roads and can bury equipment and buildings. In this case, broken snow-clearing equipment and other infrastructure challenges also hampered the community’s ability to respond, and residents went days without essential services. Several studies suggest that extreme winds will become more common in the Baffin Bay region in the future. This study demonstrates the need for proper resourcing of communities for preparedness, response, and adaptation strategies, especially with the possibility of extreme winter weather becoming more common.

Funder

National Science Foundation

Canada Excellence Research Chairs, Government of Canada

EU H2020 CHARTER

Canada Research Chairs

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Reference47 articles.

1. Arctic Climate Impact Assessment, 2005: ACIA Overview Report. Cambridge University Press, 1020 pp.

2. Adaptation in Arctic circumpolar communities: Food and water security in a changing climate;Berner, J.,2016

3. Towards a rain-dominated Arctic;Bintanja, R.,2017

4. Strong future increases in Arctic precipitation variability linked to poleward moisture transport;Bintanja, R.,2020

5. Blizzard conditions in the Canadian Arctic: Observations and automated products for forecasting;Burrows, W. R.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3