The Effect of Global Warming on Severe Thunderstorms in the United States

Author:

Seeley Jacob T.1,Romps David M.1

Affiliation:

1. Department of Earth and Planetary Science, University of California, Berkeley, and the Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Abstract

Abstract How will warming temperatures influence thunderstorm severity? This question can be explored by using climate models to diagnose changes in large-scale convective instability (CAPE) and wind shear, conditions that are known to be conducive to the formation of severe thunderstorms. First, an ensemble of climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated on its ability to reproduce a radiosonde climatology of such storm-favorable conditions in the current climate’s spring and summer seasons, focusing on the contiguous United States (CONUS). Of the 11 climate models evaluated, a high-performing subset of four (GFDL CM3, GFDL-ESM2M, MRI-CGCM3, and NorESM1-M) is identified. Second, the twenty-first-century changes in the frequency of environments favorable to severe thunderstorms are calculated in these high-performing models as they are forced by the RCP4.5 and RCP8.5 emissions pathways. For the RCP8.5 scenario, the models predict consistent CONUS-mean fractional springtime increases in the range of 50%–180% by the end of the twenty-first century; for the summer, three of the four models predict increases in the range of 40%–120% and one model predicts a small decrease. This disagreement between the models is traced to divergent projections for future CAPE and boundary layer humidity in the Great Plains. This paper also explores the sensitivity of the results to the relative weight given to wind shear in determining how “favorable” a large-scale environment is for the development of severe thunderstorms, and it is found that this weighting is not the dominant source of uncertainty in projections of future thunderstorm severity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3