Affiliation:
1. Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia
Abstract
Abstract
A novel approach to tropical cyclone (TC) detection in coarse-resolution numerical model data is introduced and assessed. This approach differs from traditional detectors in two main ways. First, it was developed and tuned using 20 yr of ECMWF Interim Re-Analysis (ERA-Interim) data, rather than using climate model data. This ensures that the detector is independent of any climate models to which it will later be applied. Second, only relatively large-scale parameters resolvable in climate models are included, in order to minimize any grid-resolution dependence on parameter thresholds. This approach is taken in an attempt to construct a unified TC detection procedure applicable to all climate models without the need for any further tuning or adjustment.
Unlike traditional detectors that seek to identify TCs directly, the authors' method seeks to identify conditions favorable for TC formation. Favorable TC formation regions at the center of closed circulations in the lower troposphere to the midtroposphere are identified using a low-deformation vorticity parameter. Additional relative and specific humidity thresholds are applied to ensure the thermodynamic environment is favorable, and a vertical wind shear threshold is applied to eliminate storms in a destructive shear environment. A further requirement is that thresholds for all parameters must be satisfied for at least 48 h before a TC is deemed to have developed.
A thorough assessment of the detector performance is provided. It is demonstrated that the method reproduces realistic TC genesis frequency and spatial distributions in the ERA-Interim data. Application of the detector to four climate models is presented in a companion paper.
Publisher
American Meteorological Society
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献