Simulated Global Swell and Wind-Sea Climate and Their Responses to Anthropogenic Climate Change at the End of the Twenty-First Century

Author:

Fan Yalin1,Lin Shian-Jiann2,Griffies Stephen M.2,Hemer Mark A.3

Affiliation:

1. Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

2. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

3. CSIRO Wealth from Oceans National Research Flagship, and the Centre of Australian Weather and Climate Research, CSIRO and Bureau of Meteorology, Hobart, Tasmania, Australia

Abstract

Abstract The seasonal structure of the wind sea and swell is analyzed from the existing 29-yr surface gravity wave climatology produced using a coupled atmosphere–wave model. The swell energy fraction analysis shows that swell dominates most of the World Ocean basins for all four seasons, and the Southern Ocean swells dominate swell in the global ocean. The swells are loosely correlated with the surface wind in the midlatitude storm region in both hemispheres, while their energy distribution and propagation direction do not show any relation with local winds and vary significantly with season because of nonlinear interactions. The same coupled system is then used to investigate the projected future change in wind-sea and swell climate through a time-slice simulation. Forcing of the coupled model was obtained by perturbing the model sea surface temperatures and sea ice with anomalies generated by representative Working Group on Coupled Modelling (WGCM) phase 3 of the Coupled Model Intercomparison Project (CMIP3) coupled models that use the IPCC Fourth Assessment Report (AR4) A1B scenario late in the twenty-first century. Robust responses found in the wind seas are associated with modified climate indices. A dipole pattern in the North Atlantic during the boreal winter is associated with more frequent occurrence of the positive North Atlantic Oscillation (NAO) phases under global warming, and the wind-sea energy increase in the Southern Ocean is associated with the continuous shift of the southern annular mode (SAM) toward its positive phase. Swell responses are less robust because of nonlinearity. The only consistent response in swells is the strong energy increase in the western Pacific and Indian Ocean sector of the Southern Ocean during the austral winter and autumn.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3