The Annual Cycle of Northern Hemisphere Storm Tracks. Part I: Seasons

Author:

Hoskins B. J.1,Hodges K. I.1

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom.

Abstract

Abstract In this paper and Part II a comprehensive picture of the annual cycle of the Northern Hemisphere storm tracks is presented and discussed for the first time. It is based on both feature tracking and Eulerian-based diagnostics, applied to vorticity and meridional wind in the upper and lower troposphere. Here, the storm tracks, as diagnosed using both variables and both diagnostic techniques, are presented for the four seasons for each of the two levels. The oceanic storm tracks retain much of their winter mean intensity in spring with only a small change in their latitude. In the summer they are much weaker, particularly in the Pacific and are generally farther poleward. In autumn the intensities are larger again, comparable with those in spring, but the latitude is still nearer to that of summer. However, in the lower troposphere in the eastern ocean basins the tracking metrics show northern and southern tracks that change little with latitude through the year. The Pacific midwinter minimum is seen in upper-troposphere standard deviation diagnostics, but a richer picture is obtained using tracking. In winter there are high intensities over a wide range of latitudes in the central and eastern Pacific, and the western Pacific has high track density but weak intensity. In the lower troposphere all the diagnostics show that the strength of the Pacific and Atlantic storm tracks are generally quite uniform over the autumn–winter–spring period. There is a close relationship between the upper-tropospheric storm track, particularly that based on vorticity, and tropopause-level winds and temperature gradients. In the lower troposphere, in winter the oceanic storm tracks are in the region of the strong meridional SST gradients, but in summer they are located in regions of small or even reversed SST gradients. However, over North America the lower-tropospheric baroclinicity and the upstream portion of the Atlantic storm track stay together throughout the year.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3